微气象传感器七要素多少钱一台_微气象传感器
1.气象站的气象工具是什么?
2.坦克的火控是什么意思?
3.自动气象站的主要功能是什么
4.气象站有哪些仪器
5.气象卫星遥感是指什么
人类总是对浩瀚的宇宙星空抱有各种各样的遐想和好奇。因此,天文观测事业由来已久,我们 用各种各样的天文观测手段和技术去研究天上的各个天体 ,并逐渐发现这些行星运行的规律。但这仍然不足以满足人类 探索 宇宙空间的欲望,在用交通工具逐渐征服海陆空之后,人类 将 探索 的目光逐渐放向更加遥远无际的宇宙 ,因此催生了航天事业的出现和发展,让人类能更加直观真实地感受宇宙的魔力,试图解开宇宙的终极奥秘和哲学。
但是,光是一个太阳系就已经超出了人们的认知尺度,所以, 探索 宇宙的难度也其实比我们想象之中要 举步维艰 ,宇宙真空寒冷的极端环境也不适合人类生存。但人类并没有轻易放弃 探索 的脚步,发明了各种各样的无人探测器到宇宙各个行星中去, 借无人探测器之“眼”亲历外太空的星球光景 ,也是性价比不错的选择。
在太阳系的行星之中, 火星是最吸引人类 探索 脚步的一颗行星 ,也被人类视为最有潜力的宜居星球;因为它相比太阳星其他行星来说, 温度和大气以及地形都和地球最为相似,具有很大的生存空间 。各个国家也争先布局火星探测事业,向火星发射无人探测器进行火星 探索 实验。
我们国家就向火星发射了“祝融号”火星车并圆满完成火星探测任务。以航天事业为傲的美国自然也不会放过火星探测的机会, 美国发射的第七个火星着陆探测器“好奇号”,为人们带回了八十多万张火星景观照片。
好奇号踏上火星, 行驶了近二十七公里以后,捕捉到了一张非凡的照片 ,这张照片传回地球后立刻引起了人们的注意,照片内容是一片 空旷的沙海 ,因为其太过空旷而显得 寂静孤单,不同寻常 ,这是怎么一回事呢?
我们可以先来了解一下大名鼎鼎的火星。人们对火星的观测由来已久, 早在欧洲古罗马时期,就有相关火星的记载 ,在古罗马神话之中,火星被视为战神;在古代中国,火星因其闪烁不定的红色光芒被视为不祥之兆,而火星也因此红色光芒而得名。
事实上,火星的红色光芒与不详并没有太大的联系,而是源于火星上的 赤铁矿在飓风之中被风化为红色的粉末后在阳光照射下呈现的“红色风暴” 。火星的直径只有地球的一半,但公转周期比地球长两倍。大气主要以二氧化碳为主, 空气稀薄且寒冷,地表一片荒芜,遍布砂石和山丘 。唯一能为火星带来生命希望的则是地表曾留下的 水流河床 的痕迹,以及 南极冰冠的冰水。
据现有的火星地质资料和数据推测, 火星极有可能存在过远古海洋 。才导致火星表面地形有如此明显的 水流侵蚀特征和沉积物 ,并且含有 水合矿物 。而火星的内部构造则可能有一个半径为一千七八公里的 高密度核 ,在核的外层包裹着一层 比地幔更稠密的熔岩 。
所以, 火星也被视为最有可能存在外星生命的行星 ,不过目前人类还没有找到足够的证据证明火星上存在外星生命,但是一些来自火星的陨石上面却有发现 疑似细菌微生物的标本 ,所以,可能火星上的生命目前还只是进化到微生物的低级形态, 并没有高级智慧生命的出现 。
虽然人类确实对火星充满遐想和好奇,但是在航天事业发展之前,人们的各种猜想都只能停留在想象之中,没有办法得到证实;随着航天事业的发展进步,人类对火星的实地 探索 和考察终于成为现实,不过一开始, 面对火星的荒芜死寂和贫瘠,人类还是大失所望。
同一时期,人类在地球深海底部的巨热环境里发现了微生物的存在, 证实微生物可以生活在极端环境之下 。因此,科学家们又燃起对于 探索 火星生命的希望, 光是美国就向火星发射了十几次火星探测器,但只有六个成功着陆了。
在NASA发射的众多火星轨道飞行器和火星着陆器里,人们逐渐了解到火星上面 曾存在液体的痕迹 。为了更深地发掘火星地貌的奥秘,美国决定向火星表面再投放一辆 以核电池提供动力、携带多种高级观测分析和记录设备,并且可以自行驱动的火星车 ,“边走边看”。
在向全美学生征集火星车命名之后,最终“好奇号”一名拔得头筹,被定为了火星车的名称,“好奇号”因此而得名。在好奇号的职业生涯之中,经历了漫长且奇妙的 探索 历程,曾在 探索 初期发现过一块金字塔形状的岩石,并 首次使用一种先进的射线光谱仪对这块岩石进行剖析探究,用高能激光枪通过击打的方式分析火星表面的岩石成分 ,甚至使用机械臂钻头成功钻取到火星表面的基岩样本,为火星 探索 历程开启了新一届的里程碑。
在好奇号的漫游旅途之中,获得了大量的 探索 成果, 在盖尔陨石坑内的底部发现了富含矿物盐的沉积物 ,证实了盖尔陨石坑曾经是一片 咸水湖 ,为火星水源论提供了证据支撑。
除此之外,好奇号还在盖尔陨石坑内探测到空气之中 甲烷含量的忽然增高 ,这种甲烷浓度的忽然上升可能 跟微生物细菌的生命活动有关 ,证实盖尔陨石坑内存在适合微生物生存发展的环境条件。
但科学家们对甲烷的成因还是持有谨慎态度,因为甲烷气体浓度的增高也有可能源于非生物活动,它 可能源于地质土壤的气体活动 ,也有可能是 多种机制和因素共同作用的结果 。
更夸张的是,后期的好奇号甚至还拍下过几张 类似于螃蟹的生物,以及疑似女外星人现身的照片和某种大型啮齿类动物的影子 ,还有很多疑似人造物的碎片。不过,这也只是人们的猜测和想象,并没有得到证实;但这些照片还是让人们对于火星存在生命抱有很大的期待。
所以,在好奇号探测火星的路上,除了发现十分具有 探索 意义的重大成果,它也给人们留下了无数想象的神秘空间和奇观美景。在好奇号行驶了将近27公里接近盖尔陨石坑中心地区的时候, 曾遇到过一片长达一公里,宽半公里的与众不同的沙海。
通常, 火星上由于布满风化过后的赤铁矿,土壤和沙丘都呈现橙红色;但这片与众不同的沙海却呈现出很是突兀的碳黑色 ,在这片黑色沙海背后则是方才 探索 完毕的夏普山,据科学家猜测,这片沙海之所以呈现黑色可能是由于 太阳辐射的侵蚀而焦黑 ,也有可能是因为它 本身就是由某种黑色物质风化而成 。
但是猜测归猜测,关于这片黑色沙海究竟是如何形成仍然是一个未知,不过好奇号似乎也并不打算亲自前往黑色沙海验证 探索 了。虽然好奇号设备先进, 以核电力为核心来稳定供电,性能俱佳 ,但有了勇气号火星车陷入特洛伊沙海的前车之鉴,好奇号还是决定不要冒险,选择绕过沙海, 沿着沙海边缘行驶 。
毕竟,好奇号已经在火星上工作九年了,远远超过当年设计的运行寿命;从好奇号传回来的照片来看,好奇号曾被认为坚不可摧的 合金轮胎在火星表面崎岖尖利岩石的磨损下,还是出现了多个巨大的窟窿 。
不仅如此,早在2012年,好奇号的一个气象传感器就已经被火星表面的石头击中损坏。2013年,好奇号的两台机载计算机也忽然出现崩溃故障,工程师花了一段时间才将其远程修复成功。所以, 在走走停停和恶劣的火星表面地形环境的双重作用下,好奇号九年能走将近27公里已经非常不容易了 。
从好奇号人们可以见得,以当今人类的 科技 水平, 探索 宇宙还需要克服许多阻碍和困难。有的人不禁会产生疑惑:航天事业的回报和投入往往不成正比, 为什么人们还是要投入那么多资金和时间去 探索 宇宙, 探索 火星?
虽然 探索 宇宙这件事情看起来十分不切实际,但是 探索 宇宙还是具有十分伟大的意义。以火星 探索 为例,火星作为太阳系之中与地球环境最为相似的一颗 类地行星 ,极有可能成为人类下一个宜居和移民的星球。 如果火星移民成为现实,那么就能减轻人类对于地球所造成的污染和负担 。同时,也能在地球因不可预测的因素毁灭之际让人类文明在火星上得以传承。
其次,火星以其独特便捷的地理位置而具有很大的科研价值,通过对火星地质和气候的研究,我们可以 推测并演化出太阳系的形成过程、生命的诞生条件、宇宙运行的终极规律奥秘 ,从而拓展人们认知科学的视野。
而 探索 火星也能成为体现一个国家综合国力的象征,因为航天事业是一个 集成高端技术和人才的产业 ,需要国家 投入大量资金和人力 ,是一个国家国力强盛的体现。所以,火星以其独特的科研价值也成为了各个航天大国角逐的对象,而广泛得到人们的 探索 。
同时, 探索 火星这件事本身也能 促进人类本身 科技 的进步和航天产业链各项技术的更新迭代 ,最终这些 科技 的又会慢慢进入人们的日常生活, 让我们普通人也可以享受到 科技 带来的便利 。
所以,好奇号火星行走的接近27公里的路程,蕴含着人类 探索 火星之路的艰辛和不易,而 那片对于好奇号来说危险和未知的黑色沙海,也象征着人类在航天事业 探索 太空的过程中所面临的困难阻碍 。虽然以我们现在的 科技 水平拿这些困难阻碍无可奈何,但相信在不远的将来,这些困难阻碍都能够迎刃而解。
因为,人类的智慧具有无限的潜力,越挫越勇,会不断 发挥主观能动性来驱动自身进步和发展 ;勇气和智慧就是人类的赞歌。
气象站的气象工具是什么?
校园气象站
应用特点:
1、实时监测:气象站设备设定有多个路径的传感器,敏锐感知到单位时间内的气象信息变化情况,数据精确到每一分钟,不容易遗漏掉任何一项指标。气象传感器,如同一个个小型的感应装置,从多方面保证信息收集的全面和准确。同时支持接入网络监控画面,多元化信息获取。
2、低能耗:气象站设备的能耗水平要是较低层次,就代表着其运行的成本将得到有效控制,这一点是尤为重要的。另外校园气象站支持电源和太阳能两种供电方式,其中太阳能电池板满格情况可供气象站稳定运行7天以上,符合绿色环保的社会发展理念。
3、无缝对接:气象信息监测后全都传送至云平台上,以供数据研究和信息整合。也能将气象参数传输到LED大屏、监控大屏等终端设备上,设备需要和多类型的通讯设备加以连接,便于学生学习、查看。
坦克的火控是什么意思?
气象站的气象工具有:激光云高仪、微脉冲激光雷达、前向散射能见度仪、透射式能见度仪、天气现象仪、闪电定位仪、风杯风速传感器、翻斗雨量计。
上述气象工具的详细介绍:
1、激光云高仪:用激光束照射云体的方法,测量激光发射到接收间的时间,从而计算云中反射点的距离,通过对时间积分的方式确定云量。
2、微脉冲激光雷达(MPL):可测量云底、多层云时空分布监测,边界层时空分布监测,气溶胶垂直分布和时空演变。
3、前向散射能见度仪:发射器与接收器在成一定角度和一定距离的两处。接收器接收大气的前向散射光。通过测量散射光强度,得出散射系数,从而估算出消光系数。
4、透射式能见度仪:通过测量发射器和接收器之间水平空气柱的平均消光系数而算出能见度。
5、天气现象仪:是一种智能型多变量传感器,由一个散射能见度仪,一个降水监测系统传感器以及温度、湿度、风向、风速等传感器组成。通过对这些数据变量的逻辑分析来判定天气现象。
6、闪电定位仪:利用闪电辐射的声、光、电磁场特性来遥测闪电放电参数,并把经过预处理的闪电数据实时地通过通讯系统发送到中心数据处理站实时进行交汇处理,可记录雷电发生的时间、位置、强度和极性等指标。
7、风杯风速传感器:用三杯式感应器,当风杯转动时,带动同轴的多齿截光盘转动,得到与风杯转速成正比的脉冲信号,由计数器计数换算后就能得出实际风速值。
8、翻斗雨量计:敏感部分是两个三角形盛水斗,可以围绕中心轴转动,每转动一次,随之运动的磁铁对干簧管扫描一次,两个电极吸合产生一个电脉冲。根据翻斗翻转的次数记录降雨量。目前,地面气象观测系统多用翻斗式雨量传感器。
自动气象站的主要功能是什么
火控系统即火力控制系统,用于控制武器的搜索/瞄准/攻击
坦克火控系统包括潜望镜、瞄准镜、激光测距仪、坦克夜视仪、高低机和方向机、火炮稳定器和带有多种传感器的火控计算机。下面我们将逐一介绍。
1.潜望镜
供观察用的潜望镜,分为无放大倍率和放大倍率的两种。无放大倍率的潜望镜,是根据光学中平面镜成像的原理,由镜体加上下反射镜等组成的。根据需要改变上下反射镜相对位置可制成不同潜望高度的潜望镜,有的还可制成旋转和俯仰式的,以便回转周视,增大观察范围。坦克上有车长观察潜望镜,炮长、二炮手用于搜索、观察的炮手潜望镜,驾驶员潜望镜,以及水陆坦克高潜望镜。
有放大倍率的潜望镜可以增大视见距离。它是由上、下反射镜和物镜组,分划镜(有的没有),目镜组和镜体等组成的。有昼视、昼夜互换、昼夜组合、测光测距与昼夜视组合,稳像式的观瞄测距组合系统等类型。
指挥潜望镜安装在炮塔的指挥塔前方位置上,可随指挥塔转动和相对指挥塔俯仰。指挥潜望镜是潜望镜和望远镜的结合,它既能观察较近目标,又能对较远的目标进行放大。它是车长用来观察战场,搜索和指示目标,判定火炮至目标的距离和测量射弹偏差用的望远观察仪器。
2.瞄准镜
坦克炮瞄准镜是供炮长操纵火炮和并列机枪时,用以发现目标,直接瞄准目标,测量距离,修正射弹偏差,观察战场,观察弹着点的一种光学仪器。坦克炮瞄准镜大多是光学绞链式直筒望远瞄准镜。它由物镜组、分划镜、光学绞链、变倍系统、目镜组和镜体等组成。它装在火炮左侧,镜头部分固定在火炮摇架左侧的瞄准镜支架上,接眼的目镜部分固定在炮长座位前面的活动吊架上,以便于炮长瞄准用。火炮俯仰时,通过镜筒中部的活动绞链使镜头的物镜一端随之俯仰,并通过炮塔前部椭圆形开口瞄准目标。目镜处有护眼圈和护额垫,以保证坦克颠簸时不致碰伤乘员。这种瞄准镜通常能将目标放大7~10倍(辨认远处目标和提高瞄准精度时用)和3.5~5倍(视场角较大,一般用作观察战场,搜索目标)两档,可以根据不同的需要,变换放大倍率。这种瞄准镜利用测距分划,只能对事先已知尺寸为2.7米高的目标(如敌坦克)进行测距,精度低,1000米的距离误差竟达80~100米。在装有较先进的火控系统的坦克上,这种瞄准镜仅作为瞄准装置使用,即在先进的火控系统出现故障时才使用。
近年来出现的指挥仪式火控系统中,炮长用了独立稳定式瞄准镜,或称稳像式激光测距瞄准镜,如豹Ⅱ坦克上的EMSE-15型炮手用综合式瞄准镜。该瞄准镜内有一具备有两个放大倍率(如8倍、16倍)的单目光学潜望式瞄准镜、钕玻璃激光测距仪,以及稳定瞄准线的设备。稳定的主瞄准线在方向上有一定的活动范围,高低方向上则取决于火炮瞄准角的修正角度。其瞄准线的稳定多是在平行光路中通过稳定反射镜来实现的。光线从入射窗进来后,经反射镜反射,通过透镜、直角棱镜在分划镜上成像,观察者则通过目镜和棱镜组进行观察。这种指挥仪式火控系统的一般工作过程如下:炮长通过控制装置使瞄准线对准目标,此时火炮自动随动于瞄准线。对准目标后进行测距和跟踪,随后,火控计算机根据输入的距离、目标速度、倾斜角与各弹道修正参数,计算出提前角。该提前角信息仅输送给炮塔和火炮驱动系统,驱动火炮到达允许的射击提前位置。一旦火炮进入计算机所规定的允许射击位置,就自动进行射击。为了判断火炮是否进入允许射击位置,一般在系统中设有一个具有逻辑判断功能的重合电路或称射击门电路。由于这种瞄准镜有独立的瞄准线稳定装置,炮长直接控制的是瞄准线而不是火炮,需要稳定的往往只是一个棱镜或镜座,质量很小,所以瞄准线的稳定精度很高,可达0.2密位,远远超过了火炮的稳定精度,使射击精度大为提高,可以实现行进间对运动目标的射击。必须指出,瞄准线独立于火炮,动态精度虽然提高,但静态精度却有所降低。
激光测距仪与昼夜间瞄准镜合成一体以及瞄准线的稳定,可使炮长不论在白天还是夜间,不论在原地还是在行进中都能判定目标距离并对目标进行准确的射击。美国的XM-803坦克装上这种瞄准镜以32公里/小时的速度越野时,瞄准线误差值在水平和高低两个方向上不大于0.5密位。坦克炮有了这种瞄准镜和其他先进的火控部件组成的火控系统,不管坦克如何颠簸,都能保证有较高的首发命中率。
3.激光测距仪
激光测距仪是用激光来测定坦克至目标距离的一种仪器。利用激光测距比用目测判断距离或用光学测距的精度都高,而且精度不受距离远近的影响;激光测距仪体积小,重量轻,操作和使用方便,易于掌握;抗干扰性强。但是,它在大雾弥漫能见度差激光衰减严重的情况下,无法测距。
激光测距仪的测距原理是怎样的呢?大家知道,距离=速度×时间。激光测距仪就是根据这个基本道理设计的。测距时,激光测距仪向目标发时一个激光脉冲,由于目标的漫反射,部分能量被反射回激光测距仪。激光测距仪测量出从发射激光脉冲到接收到回波激光脉冲所经过的时间t、则激光测距仪到目标的距离S就可以求出。因为光速C约为30万公里/秒,在激光测距仪测量出的时间t内,激光经过一个来回路程,所以1/2Ct就是激光测距仪到被测目标的距离S。但是,由于光速极快,其运行几百米、几千米的时间,是用钟表无法精确测出的。用时标振荡器(石英晶体振荡器)可以计时。这种振荡器振荡频率极高,比如每秒钟能产生3000万个晶振脉冲,每个脉冲的持续时间就是3000万分之一秒。测距时,在发射激光脉冲的同时,计数器开始记录晶振脉冲的个数,一直记到接收到回波激光为止。如果共记录n个脉冲,那么,n×3×10-7秒就是激光脉冲在激光测距仪和目标间往返一次的时间。显然,用这种方法可以精确地测量出时间t,从而算出目标的精确距离。
激光测距仪种类繁多,性能各异。但其结构都包括电源、激光器、激光发射光学系统(发射望远镜)、激光接收光学系统(接收望远镜)、电控系统(光电元件、放大整形、门控电路、时标振荡器、计数器等)、距离显示器等几部分。激光测距仪的工作过程如下:接通电源,激光测距仪及其时标振荡器开始工作。这时由于门关闭,时标振荡器的脉冲信号不能进入计数器。当测距仪对准目标且炮长按下触发按钮时,激光器就发出一个很强很窄的激光脉中。激光器发出的激光要分成两路:一路激光束经过发射光学系统,使激光束发散角进一步减小后射出并经大气传输打到目标上;另一路就是其中的极小一部分激光立即由取样棱镜的反射而进入光电元件的光敏面上,作为发射参考信号(取样信号或称主波信号),来标定激光出发的时间。参考讯号到达光电转换器(光电倍增管等),将光讯号转换成为电信号,即光脉冲变成电脉冲。这个电脉冲经放大整形后送入时间测量系统,打开电子计数器的电子门,此时,时标振荡器的脉冲信号进入计数器,计录器开始记录脉冲个数(即开始计算时间)。而射向目标的激光脉冲,由于目标的漫反射作用,总有一部分光从原路反射回来,而进入接收光学系统,由目标返回的激光脉冲(接收信号或称回波信号)同样也经过光电转换器、放大整形电路而进入时间测量系统,回波信号推动电子门发出关门指令,使电子门关闭,时标振荡器的脉冲信号不能进入计数器内,计数器停止计数(停止计算时间)。时间测量系统的计数器把所记录的脉冲个数经译码电路换算成距离,通过距离显示器显示出来,所显示的数字,就是被测目标的距离。同时,把测出的目标距离信息自动输入火控计算机。
激光测距瞄准镜借助瞄准镜视场内的指标可与坦克武器一起进行校正。独立式激光测距仪是根据望远镜原理制成的接收望远镜和发射镜望远镜各有其独自光学元件的测距仪。其主机部分(收、发机部分)通常安装在坦克炮塔外部的装甲匣内,其控制部分位于炮长和车长的工作位置上。独立式激光测距仪通常是借助坦克炮瞄准目标的,这时,两者的光轴必须一致(两者同时对准一个目标)。也就是说炮长通过瞄准镜瞄准目标后,激光测距仪也对准这个目标,只要按下激光发射按钮,就可以测出目标的距离并在距离显示器上显示出距离数值,使用起来非常方便。
现代坦克用激光测距仪测距范围为300~10000米,测距误差为±5~10米,每分钟能测距6~12次,最高达每秒钟1次,在各种气候条件下测距的可靠性达99%。在-40℃~+50℃的温度下都能正常工作。但是由于激光的光束较狭窄,对准目标较困难,所以当目标比较隐蔽,其前后有烟带、树木、土堆或农作物(仍可见目标)等时,不易测得其真实目标距离,目前有的已有“选择”数据的能力,由乘员控制来解决,即在一次发射中,能选择读第一或第二或第三返回的数据,而舍弃其他数据。美国M-1坦克用的二氧化碳激光测距仪比较简单,测距效能高,对人眼也安全;该测距仪和热成像仪一体化之后,能够昼夜测距。所以,它是一种较理想的激光测距仪。
4.夜视仪
第二次世界大战后期德国人在车辆上安装了一种仪器,使车辆在黑夜不开灯就可高速行驶,从而把V-2火箭在夜间送往前线,成功地避开了同盟国军队的监视和空袭。这种仪器就是最早的坦克夜视仪。现在的主动红外夜视仪就是由它演变而来的。所谓坦克夜视仪就是利用红外线或放大天然微光原理供坦克乘员进行夜间观察和瞄准的仪器。现代坦克上主要用主动红外夜视仪、被动红外夜视仪和微光夜视仪。
(1)主动红外夜视仪
红外夜视仪是用目标(物件、人员)发出的或反射回来的红外线进行观察的夜视仪器。现代坦克装配有驾驶员红外夜视仪、车长红外夜视仪、炮长红外夜视仪和炮长红外夜间瞄准镜。主动红外夜视仪靠自带红外光源(红外探照灯)照射目标,利用被目标反射回来的红外线转换成可见图像,由红外探照灯、观察镜、电源三部分组成的。由于自然界物体的温度较低,辐射出的红外线能量很小,不能满足仪器的成像要求,所以需要红外探照灯或带有红外滤光玻璃的白炽探照灯来发射人眼行不见的红外辐射。主动红外夜视仪的工作原理如下:当接通电源后,红外探照灯发射出红外线,照射前方目标,由主动红外夜视仪中的观察镜的物镜接收目标反射回来的红外线,在红外交像管的光电阴极面上形成目标的红外光学图像,通过变像管将不可见的红外目标像换成人眼可见的目标图像,在荧光屏上显示出来,于是人眼就可通过观察镜的目镜观察到目标的图像。目前,坦克驾驶员红外夜视仪的视距(目标是坦克)为60~100米,车长红外夜视仪的视距(目标是坦克)为800~1000米,炮长红外夜间瞄准镜的视距为1200米,有的可达1500米。主动红外夜视仪因为有红外探照灯照明场景,光束照射到目标上将使景物间形成了较显著的明暗反差,所以图像消晰,利于观察但是容易自我暴露(红外探照灯向外发射红外线、容易被红外探测器发现)而招来火力攻击,而且观察的范围只限于被照明的景物,视距也受到探照灯的尺寸和功率的限制,红外探照灯易被打坏,因而逐步为各种被动式的夜视仪器所代替。
(2)微光夜视仪
夜间的月光、星光、系的亮光和大气辉光等,通称为“微光”。利用夜空的微光并加以放大,使人眼能看得见目标图像的一种仪器称为微光夜视仪。微光夜视仪的总体结构与主动式红外线夜视仪基本相同,唯一的区别是省去了红外线光源——红外探照灯,所以它是一种被动式夜视仪器。微光夜视仪的关键部件是像增强器,它把微弱夜天光(其照度低于0.1勒克斯)照明下人眼分辨不清的景物图像转换成人眼可看清的可见光景物图像。微光夜视仪工作原理如下:其光学系统的物镜接收目标反射的自然微光,在像增强器的第一级光电阴极面上形成极为微弱的目标光学图像,经像增强器增强(其亮度增益通常为几万倍)后,在最后一级荧光屏上显示可供人眼观察的目标图像。微光夜视仪构造简单,体积较小,耗电较少,特别是不需人工的红外光源,因而使用安全可靠,不易暴露,从而提高了坦克在夜间的隐蔽性。英军在马岛战争中,借助这种夜视设备最终占领了马岛,就是个明证。但是,微光夜视仪的观察效果和作用距离,受周围环境的自然照度(星光或辉光的亮度)和大气透明度影响较大,在全黑条件下几乎不能工作。与主动红外夜视仪相比,图像不如后者清晰。特别是当天空中有密布的浓云和贴近地面的烟雾与无定向的散射将使景物的照度和对比度明显下降,会严重地影响观察效果。所以在某些坦克上还同时装有主动红外夜视仪或被动红外夜视仪。利用级联式像增强器的微光夜视仪,基本上能符合战术性能要求,但它遇到炮口焰、爆炸闪光等会产生模糊现象,最后一级图像还有畸变,因而不得不时常中断工作。在像增强器的光电阴极和荧光屏之间插入一个具有电子倍增功能的器件,可以避免闪光造成的模糊现象。目前,较先进的微光夜视仪的夜视距离在星光下已达到1600米,月光下已达2700米。如果把像增强器加在电视机的光导摄像管面前,那么电视机就可以在微光下工作,成为全被动放大的夜视仪器。豹Ⅰ坦克上的PZB-200型坦克瞄准镜就是这一种。这种瞄准镜是由安装在坦克炮上方的电视摄像机、两个位于车长和炮长前面的监视器、操纵台和连接电缆组成的。当照度为10-4勒克斯时,使用该瞄准镜可在1500米距离内进行射击。
(3)被动红外夜视仪
大家知道,响尾蛇的眼睛已退化得快成为瞎子了,但它却能敏捷地捉住老鼠及其他小动物,是因为在响尾蛇的眼与鼻之间的小“颊窝”热敏感器官(热源测位器),能接收小动物身上发射出来的红外辐射,周围温度变化在0.003℃它就能感到,且能定方位,引导响尾蛇去猎取食物。被动红外夜视仪就是根据这种现象研制成的。它是利用红外探测器将目标与背景间、目标各部分间的辐射差接收后,形成可见的图像显示出来,是供人观察的一种夜视仪。它可利用人体、坦克发动机废气等发出的微弱红外光源进行观察、瞄准。由于它工作在8~14微米的热红外波段,可将处于常温下的景物的热辐射分布图像加以记录并转换成可见的光图像显示出来,所以又称为热成像仪。M-1和豹Ⅱ坦克均装备有热成像仪。
被动红外夜视仪是利用光学扫描技术和对中、远红外辐射敏感的固体半导体材料,将地物辐射的红外能量转变成电信号,把电信号处理放大后,再转变成电信号,把电信号处理放大后,转变成可见光图像的。来自目标的热辐射通过输入光学镜组(无焦点)照射到扫描器上,并通过一个红外平行光物镜聚焦在探测器上。探测器将热辐射信号转换成电信号。电信号经过相应放大后通过发光二极管转换成可见光。通过平行光镜头将发光二级管射线控制在扫描镜的背面。用这种方式,在任何情况下都必然在机械上保证接收热成像和发光二极管显像的同步性。因此,可以看到在发光二级管组件中产生、由扫描器组合的“热图像”。致冷器的作用是提高系统的灵敏度,减少探测器本身的热辐射。
被动红外夜视仪自身无红外光源,只依赖目标与背景间、目标各部份间的温差而产生的热辐射成像,因而不受周围环境的自然照明条件影响;用它可透过雾、雨、雪观察目标甚至能透过稀疏的丛林进行观察,能透过伪装,探测出隐蔽的车辆和火炮的位置,甚至能辨认机场上刚起不久的飞机留下的“热痕”轮廓;具有良好的隐蔽性,不易被敌方发现和干扰,使用安全可靠;它不会由于炮口焰、爆炸等产生致盲效应;对坦克发动机和刚发射过的枪管、炮管等具有较强热辐射源的目标,它的视距可达数公里。现代较先进的主战坦克装备的被动红外夜视仪视距一般为1200~1500米,最大已达3000米。但是,热成像仪需要附加的制冷设备不易保证及时更换;冷却探测器的气瓶不易得到,换瓶后制冷器系统的污染也是个问题,角度辨率还比较低,目标的细节难以辨认;它所显示的温度对比图像与可见光对比的图像有所差异,人们观察不习惯;敌方在含有防红外药剂的烟幕或装备防热红外侦察的伪装装置掩护下,可能照常能够机动。
总之,由于坦克上装有这些夜视仪器,在夜间能看清周围的目标,所以坦克变成了夜战的能手。
5.方向机和高低机
对坦克火炮的操纵和稳定是为人们最先注意的问题。现代坦克上装的动力传动装置,以保证最快的瞄准速度并保证迅速地将火力从一个目标转向另一个目标。此外,火炮还需要最小稳定瞄准速度以保证对目标的精确瞄准。现代坦克的最小瞄准速度为0.05°~0.1°/秒不等,而炮塔的急转速度已提高到30°/秒和30°/秒以上。
一代坦克炮有两套操作机构可使用。一套是手工操作,由炮手左手摇动方向机、右手摇动高低机,实施跟踪和瞄准;另一套是电操纵,高低向一般为电液式,由炮长控制,水平向由炮长通过电机放大机控制。前者使用可靠,但速度慢,现代坦克留作备用。后者既可实施高速跟踪,又能实施精确瞄准,是常用机构。早期坦克仅有手工操作机构。
(1)炮塔方向机
坦克炮大都安装在可旋转的炮塔上。在战斗时,炮塔应能同速转动,使火炮对准随时出现的目标,炮塔还应能低速转动以对目标进行精确瞄准,或以某一任意速度转动使火炮跟踪敌人活动目标,进行概略瞄准或行进间瞄准等等。炮塔方向机就是用来回转炮塔的,它一般由炮手操纵,但在近代坦克上,为了使车长发现新的目标时能直接将火炮调转到新目标力向,以提高火力机动性,车长大都能超越炮长直接操纵炮塔。
炮塔方向机一般是由炮塔座圈、方向机减速箱和驱动装置等部分组成的。炮塔座圈相当于一个大的向心推力球轴承,用来支承炮塔,并使炮塔能相对于车体灵活转动。行军时,为了将炮塔可靠地固定住,用炮塔行军固定器。方向机减速箱简称方向机。它固定在炮塔上,直接用来驱动炮塔。驱动装置用来驱动方向机减速箱。现代坦克在迅速转移火力或者使用稳定器时用动力驱动,即用电驱动或液压驱动。动力驱动的能源是坦克内的蓄电池和发电机。当不使用稳定器或动力驱动装置发生故障而需要转动炮塔时,用于驱动。在用双向稳定器的坦克上,方向稳定器产生的信号,通过动力驱动装置来驱动方向机减速箱。目前,方向机的转速可快可慢,通常可使炮塔以0.05°~30°/秒的任意转速左右回转,十分灵活。
(2)高低机
高低机固定在炮框左侧,用来赋予现代坦克炮以-10°~+20°的高低射角。高低机主要是由减速机构、保险联轴器和解脱装置组成的。减速机构用来赋予火炮以高低射角和使火炮进行瞄准。保险联轴器用于坦克行进间火炮剧烈颠震时,保护高低机的零件不受损坏。解脱装置用来使蜗杆和蜗轮分离。
手摇瞄准时,转动转轮,动力经减速机构使火炮绕耳轴俯仰。利用稳定器操纵台瞄准时,解脱装置使蜗杆和蜗轮分离,因而火炮不受高低机控制,即可使用稳定器进行高低瞄准,使用高低稳定器时火炮可在0.07°~4.5°/秒速度范围内进行俯仰瞄准,快速地改变射击距离,并准确地捕捉目标。
6.火炮稳定器
坦克在起伏不平或曲折的道路上行驶,会使火炮因车体振动而偏离瞄准角即射角或因坦克转向而偏离原方位角。在这种情况下,即使通过瞄准镜发现了目标,也难以操纵火炮高低机和方向机在短促时间内完成精确瞄准与准确射击。因而需要安装一种自动调节装置,以保证火炮不因车体的振动而改变已瞄准的方位。这种装置就是火炮稳定器,它可将火炮和并列机枪稳定在所赋予的射角和射向上。火炮稳定器分为单向和双向两种。仅有火炮高低稳定的是单向稳定器,也称高低稳定器。不仅能高低稳定,而且也能实现方向稳定的是双向稳定器。现代主战坦克大多装了双向稳定器。用火炮双向稳定器,可使坦克运动时火炮和并列机枪自动地保持在所赋予的高低和方向位置上,从而提高行进间射击的精度;可用一个操纵台实现高低或水平方向的瞄准,既轻便,又平稳;车长可以超越炮长而直接控制稳定器给炮长指示目标;在火炮不需要稳定时,可用电传动机构来驱动炮塔。
那么,火炮稳定器为什么能使火炮不受车体颠簸的影响呢?这好比人们抱着电视机坐在行驶的汽车上,汽车左右倾斜或前后俯仰,人都能感觉出来,并会通过神经系统驱使身体向相反的方向倾斜或俯仰,从而抵消摇晃、颠簸的作用。坦克火炮稳定器正是一种相当于人体这种功能的装置。它是由测感机构和执行机构组成的。相当于人的感觉器官的测感机构,专门用来测量和感受坦克车体左右摇摆或前后俯仰的角度大小和速度的快慢。相当于人之手脚的执行机构,根据测感机构测量出坦克车体水平摆动、俯仰角的大小和俯仰速度的快慢,使炮身向相反的方向摆动和俯仰,以抵消车体的晃动和颠簸。
火炮稳定器是由陀螺仪组、操纵台、动力油缸、液压放大机、电机放大机和炮塔电功机等组成的。现举例说明其简单原理:例如,火控计算机定出火炮射击高低角是0.1°,高低方向的火炮稳定器就将火炮身管稳定在0.1°的位置上。由于火炮身管受车体上下振动的影响,高低角必然会发生变化。如果炮管台高0.05°,高低稳定器中的测感机构——陀螺仪等就会立刻感受到炮管变化0.05°,并将感受到的这个变化量变成电信号,放大后,通过执行机构——电动机和动力油缸等对火炮加修正力,使炮管迅速向下转动0.05°,恢复到高低角原定的0.1°位置上。此时测感机构就没有信号输出,修正力也就立刻消失,炮管也就不再转动。由于这个修正过程是在很短的时间内完成的,因此,尽管炮管受车体颠簸振动发生变化,但修正合力会使坦克火炮仍能保持在预定射角的允许范围内。双向稳定器与单向稳定器的工作原理基本相同,都是利用陀螺仪的定轴性进行稳定,利用陀螺仪的进动性进行瞄准的。所不同的是为了稳定火炮的方向,将陀螺仪的安装方向转了90°。稳定精度是评定火炮稳定器的主要指标。据报导,M-1坦克、豹Ⅱ坦克高低瞄准的稳定精度是0.2~0.15密位,方向瞄准的稳定精度是0.4~0.3密位。
7.火控计算机
火控计算机是一种自动赋予火炮射角的仪器,是一个数据处理系统,它是火控系统的核心部分。炮长用瞄准镜搜索到目标后,进行瞄准并通过激光测距仪测出日标距离,该距离数据将自动输入火控计算机,火控计算机根据目标距离、选用的弹种、内外弹道数据以及炮管磨损、耳轴倾斜、气温、药温、风力、风向、初速等的修正量(可用各种传感器测量,也可用人工装定)进行弹道解算,解算出的瞄准角和方向提前角被送到瞄准镜并自动装定表尺,同时输出电信号控制火炮稳定器赋予火炮瞄准角和方向提前角,并自动调整好火炮的位置,炮长在瞄准镜内进行二次瞄准即可击发射击。除开始瞄准、二次瞄准和弹种选择外,其他工作程序完全自动化,这不仅缩短了火炮射击时间,而且提高了火炮射击精度,使在1500米射程上的命中率可提高70%以上,即使射程提高一倍仍然可以保持命中率。
火控计算机的种类很多,数字式电道计算机比较先进。因为它既能指挥控制坦克炮的射击,又能指挥控制反坦克导弹的发射,有利于在坦克上用导弹武器;它比模拟式计算机更能满足增强坦克的火力的要求,而且可与机载、舰载计算机通用;电道计算机的计算精度高,并且有记忆存储、逻辑判断的能力。
火控计算机是由输入装置、运算器、存储器、控制器和输出装置等组成的。简易的火控计算机连存储器都没有,用距离译码来控制运算。输入装置用来输入原始数据和计算程序。存储器用来保存和记录原始数据、运算步骤及中间结果。运算器是对代码进行算术运算和逻辑运算等各种运算的装置。控制器用来实现机器各部份的联系和控制,保证计算过程的自动进行。输出装置用来输出计算结果。
弹道计算机的道理和算盘的道理是一样的:要算一道题,先拿到任务书(相当于计算机的输入装置),然后根据需要把记录在纸上的数据(相当于存储器),有顺序地取到算盘(相当于运算器)上,人用手指拨珠子并决定进行何种运算(相当于控制器),最后把计算结果写在报告书(相当于控制器),最后把计算结果写在报告书(相当于输出装置)上。但是,火控计算机与算盘有不同之处:算盘是一颗一颗珠子拨算,而且要考虑对中间结果的处理,火控计算机则每秒可以自动进行几十万次的运算。装有这么一套先进综合火控系统的主战坦克,无论在白天或黑夜,无论是处于原地还是行进间,都能又准又快地确定火炮射击的方向与高低角,保证火炮迅速地瞄准敌人的目标(静止或活动的目标),并把它们击毁。
气象站有哪些仪器
自动气象站的功能作用就是,自动气象站主要实时监测温度、湿度、风速、风向、雨量、气压、 光合辐射、蒸发、土壤温度、土壤湿度等多种气象参数,气象观测。
自动气象站的功能作用就是,自动气象站主要是由气象传感器、微电脑气象数据集仪、电源系统、防辐射通风罩等部分构成,是一种能主动观测和传递气压、气温、相对湿度、风向、风速和雨量等常规气象要素信息,进行地面气象观测、储存和发送观测数据,自动气象站能够根据需要将观测数据转换成气象电报和编制成气象报表的地面观测装置。
自动气象站的功能作用就是,自动气象站,是指在某一地区根据需要,建设的能够自动探测多个要素,无需人工干预,即可自动生成报文,定时向中心站传输探测数据的气象站,自动气象站弥补空间区域上气象探测数据空白的重要手段。
自动气象站的功能作用就是,自动气象站用于现场监测许多气象因素,例如风速,风向,降雨量,温度,空气湿度,光度,土壤温度,土壤湿度,蒸发和大气压力。自动气象站可以通过支持数据收集通讯线路并将数据发送到天气计算机天气数据库进行统计分析和处理的专业人员连接到计算机。
自动气象站的功能作用就是,由气象传感器、微电脑气象数据集仪、电源系统、防辐射通风罩、全天候防护箱和气象观测支架、通讯模块等部分构成。自动气象站通过专业配套的数据集通讯线与计算机进行连接,将数据传输到气象计算机气象数据库中,用于统计分析和处理。
气象卫星遥感是指什么
天气现象仪、能见度仪、风塔、雪深传感器、雨量筒、激光云高仪、百叶箱、承重雨量传感器、雨量传感器、闪电定位仪、大型蒸发皿、小型蒸发皿、酸雨样桶、地面及浅层地温仪、深层地温仪、日照计、辐射观测仪、电信积冰架等。
一般的气象站都需要测量天气的六要素,即温度、相对湿度、大气压、风速和风向以及降水量。对应的气象仪器为温度计、相对湿度计、气压计、风速风向计和雨量筒。现在某些风速风向计包含了微型气象站的功能,安装一个仪器可以同时测量除降水量以外的所有参数。根据各地的不同,气象仪器还可以有进行太阳辐射测量的太阳辐射计,测量日照时长的日照时间计。
气象卫星遥感是利用卫星上的气象传感器获取地球大气和云系的信息,并通过遥感技术进行观测、监测和分析的过程。它主要用于获取全球、区域和局部范围内的气象要素、云图和气候变化等信息。
气象卫星遥感系统通过搭载在卫星上的传感器,可以获取大气中的辐射、温度、湿度、云量、降水、风场等气象要素的数据。这些传感器通常包括红外线和微波传感器,能够接收不同波长的电磁辐射,从而提供不同的气象信息。
利用气象卫星遥感数据,可以实时监测和预测天气系统的演变,包括气旋、风暴、降雨等。气象卫星遥感数据还可用于生成云图,观测云的类型、高度和分布等,对天气状况和云量进行分析。此外,通过长期观测和分析,气象卫星遥感还能提供气候变化的趋势和模式,对气候研究和预测具有重要意义。
气象卫星遥感数据被广泛应用于气象预报、天气灾害监测与预警、农业气象、海洋气象、环境监测等领域。它为气象学、气候学和相关领域的研究和应用提供了重要的数据来源,为人类生活和社会经济发展提供了重要的气象信息支持。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。