1.液相和气相色谱仪的原理和组成部件是什么?

2.气相色谱仪的工作原理

气象色谱仪的操作流程_气象色谱仪注意事项

 色谱分析技术能够实现原料分离,分析环节中同时完成多种任务,下面是我为大家精心推荐的色谱分析技术论文,希望能够对您有所帮助。

色谱分析技术论文篇一

 涂料检测中的现代色谱分析技术应用分析

 摘 要:文章首先介绍了气相色谱法涂料检验的原理,并对检验环节中常见的问题以及解决对策进行分析。从技术的优缺点两方面进行。其次重点分析高效液相色谱法的应用原理,并对涂料检测环节的技术要点做出总结。帮助提升检测结果的准确性。

 关键词:涂料检测;现代色谱;气相色谱法

 1 高效液相色谱法

 该种技术融合了传统工艺中的优点,同时也对存在的问题做出优化,更高效的解决检测期间的影响问题。这种技术能够实现原料分离,分析环节中同时完成多种任务,与传统方法相比较在时间上会有明显的减少,尤其是对受热程度的分析判断,更高效合理。检验环节中常见的加热问题,成为色谱分析的首要影响因素,如果不能合理的设置温度,很容易造成分析结合与实际情况不符合。大部分涂料都是液体形式的,在性质上更具有稳定性,原料选取的量也能得到控制。随着对环保和健康的日益重视,国家陆续出台了一些涂料相关的有毒有害标准,涂料的生产工艺和配方也随之调整优化。但也不乏有生产厂家使用现行标准中还未被限量的有毒有害物质来替代已被限量的物质。这就要求在检验工作中不仅要依照现行标准对涂料样品进行检验,还要积极发现还未被限量的有毒有害物质。涂料产品成分复杂多样,高效液相色谱法属于分离性分析方法,能够对绝大部分的有机物进行分析,尤其是对挥发性不强,高温易分解的物质,能获得比其他方法更好更稳定的结果。

 涂料中含有的化学物质可能会对环境造成污染,因此目前的检测工作也大部分是针对生态环保来进行的,目的在于避免质量检测不达标的物质投入到使用中。因此检测工作要有明确的目标,对待检物质中可能会含有的污染物进行判断。有毒涂料防污剂有机锡的HPLC分析在船舶防污涂料抑制海洋生物污损中发挥了非常有效的作用,随着海洋监测技术的发展,有机锡的毒性和对生态系统的危害越来越多地被人类认识。海洋环境中的有机锡浓度很低(10-12~10-9),而且种类繁多,因此用传统的仪器很难满足高灵敏度、高选择性的分析要求。其中较成熟的方法是以GC(凝胶色谱)为分离手段,配以适合金属离子分析的检测器。

 HPLC能对不适应GC的有机锡进行分析,适用于大多数极性及非极性有机锡化合物的直接分离。不需萃取及衍生,在常温下可直接分离样品中不同形态的锡,不但缩短了分析时间,而且还减少了分析过程中可能的损失;可通过改变固定相和流动相获得最佳分离;尤其适用于具有生物活性化合物的分离与形态分析。凝胶色谱法是液相色谱法的一种,其分离原理与其他色谱法不同,是按分子体积的大小进行分离,所以也称为体积排阻色谱法。高效凝胶渗透色谱是20世纪60年代发展起来的一种液相色谱方法,主要用途是测定高聚物的相对分子质量及其分布。

 2 气相色谱法

 2.1 裂解气相色谱-傅里叶变换红外光谱联用

 能够用来判断树脂涂料中的组成成分,同样是针对光谱来进行,该种技术方法在所得结果上更具有全面性,融合了两种技术方法中的优点,在对色谱类型进行判断时可以直接显示结果。生产工艺不断进步后,涂料中的含有成分也在逐渐复杂化,高分子结构在普通的红外光谱下不容易分析。关于该种色谱技术,在国内的研究起步较晚,应用环节也是根据已有的研究结果来探讨的。

 我国学者在研究过程中,提取涂料中的成分,将检测得到的成分含量录入到计算机设备中进行分析,更准确的定位色谱表现形式与其中涂料含量的函数关系。该种技术可以选择任意部分涂料进行检测,不需要对测试点进行选取,节省时间的同时也能够减少标样点,对未来的工作开展有很大帮助。这一特征性也是该技术能够得到应用落实的原因。

 红外光照作用下,涂料发生的裂解反应是检测开展的依据,不需要再次选择分析的样本,可以直接根据反应过程来分析结果。面对比较复杂的分析对象时,仅仅依靠简单的裂解很难实现目标,简单的升高温度能够促进涂料裂解,再根据反应发生的情况来判断是否达到可以检测的点。红外光照在其中发挥着催化的作用,可以应对化合物检测。但涂料的形式并不是如此简单,还包含了聚合物形式,红外光谱检测的效果便会受到阻碍。

 2.2 裂解气相色谱-质谱联用

 涂料由几大部分组成,树脂原料常常被应用在基料制作中。对于耐高温性质好,并且不容易分离的材料,不能再通过高温裂解的方式来检验。但检验方法在原理上都相同,遇到的难题是如何促使裂解反应发生。常见的方法是对分子结构链进行破坏,涂料中的成分自然分解,此时在对色谱表现形式进行分析,能更好的完成任务。裂变过程中会散发出能量,不同分子结构链变化期间所散发的热量也不相同,同时也与基料自身耐高温形式相关。

 了解到裂变需要经过高温加热来实现分析检测时,关键技术是对温度的控制,如果加热温度超出了需求范围,很容易造成分子结构链过于零散,影响到结果的判断。不可忽略的一点是,涂料在高温状态下其中的一些物质容易发生氧化反应,分解出检测环节不需要的物质,对任务开展产生阻碍。由此可见,这种方法虽然操作过程简单,结果分析准确,但却容易受外界因素影响。

 涂料在高温环境下发生反应变化需要一段融合的时间,而破坏结构链是在高温加热的瞬间完成的。检测环节中,可以在短时间内瞬间升高温度,这样能够避免物质的高温氧化反应,提升检测结果的可靠性。影响物质并不能被完全消除,只是尽可能的将生成量控制在合理范围内,不对检验分析造成影响。根据检验结果可以了解到,不同的基料材质对涂料色谱表现形式会产生影响,在检测环节需要对原料组成成分进行判断,明确高温状态下可能会发生的反应类型。任务进行期间,需要选取不同涂料的样品来测试,避免掺入其他杂质。所选取的量要均等,观察检测结果的同时将原始数据整理记录,用于后续的分析检验环节,可以更好的对比。根据反应发生的形式对检验技术进行选择,涂料色谱分析在流程上会有明显的进步。

 3 结论

 快速灵敏的仪器分析法在很大程度上取代了繁琐费时的化学分析法,打破了化学分析的局限,极大地提高了分析工作的效率、分析精度与可靠性,而先进的色谱技术已成为涂料成分检测不可缺少的重要手段。

 参考文献

 [1] 宋晓波,兰小军,丁立群.现代色谱分析技术在涂料检测中的应用[J].上海涂料,2013(03).

 [2] 尹洧.色谱分析技术在食品检测中的应用[J].农业工程,2012(08).

点击下页还有更多>>>色谱分析技术论文

液相和气相色谱仪的原理和组成部件是什么?

气相色谱仪不出时间可能是以下几个原因导致的:

1、硬件故障:气相色谱仪的硬件故障可能会导致不出时间。可能是探测器、进样口、柱塞、进样针等部件出现故障,需要进行维修或更换。

2、操作错误:可能是操作人员没有正确设置仪器参数或者样品处理不当。需要重新检查仪器设置和样品处理流程。

3、软件问题:可能是软件故障或者操作系统的问题导致。需要进行软件更新或者重新安装操作系统。

气相色谱仪的工作原理

液相色谱仪:

色谱分离基本原理:在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相.  色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的.  使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面.当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用.  由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出.与适当的柱后检测方法结合,实现混合物中各组分的分离与检测.

高效液相色谱仪可分为“高压输液泵”、“色谱柱”、“进样器”、“检测器”、“馏分收集器”以及“数据获取与处理系统”等部分.

高压输液泵

功能 驱动流动相和样品通过色谱分离柱和检测系统; 性能要求 流量稳定(±1),耐高压(30~60Mpa),耐各种流动相:例如:有机溶剂、水和缓冲液; 种类 往复泵和隔膜泵.

色谱柱

功能 分离样品中的各个物质; 尺寸 10~30cm长,5mm内径的内壁抛光的不锈钢管柱; 填料粒度 5 10μm ,高效微粒固定相;

进样器

功能 将待分析样品引入色谱系统; 种类 ①注射器,10Mpa以下,10μm微量注射器进样 ②停流进样 ③阀进样,常用、较 理想、体积可变,可固定 ④自动进样器,有利于重复操作,实现自动化

检测器

功能 将被分析组在柱流出液中浓度的变化转化为光学或电学信号; 分类 ①示差折光化学检测器 ②紫外吸收检测器 ③紫外一可同分光光度检测器 ④二极管阵列紫外检测器 ⑤荧光检测器 ⑥电化学检测器

馏分收集器

功能 如果所进行的色谱分离不是为了纯粹的色谱分析,而是为了做其它波谱鉴定,或获取少量试验样品的小型制备,馏分收集是必要的; 方法 ①手工,少数几个馏分,手续麻烦,易出差错.  ②馏分收集器收集,比较理想,微机控制操作准确.

数据获取和处理系统

功能 把检测器检测到的信号显示出来

气相色谱仪:

GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离,其过程如图气相分析流程图所示.  待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡.但由于载气是流动的,这种平衡实际上很难建立起来.也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出.当组分流出色谱柱后,立即进入检测器.检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比.当将这些信号放大并记录下来时,就是气相色谱图了.

(1)

载气系统 气相色谱仪中的气路是一个载气连续运行的密闭管路系统.整个载气系统要求载气纯净、密闭性好、流速稳定及流速测量准确.  (2)进样系统 进样就是把气体或液体样品速而定量地加到色谱柱上端.  (3)分离系统 分离系统的核心是色谱柱,它的作用是将多组分样品分离为单个组分.色谱柱分为填充柱和毛细管柱两类.  (4)检测系统 检测器的作用是把被色谱柱分离的样品组分根据其特性和含量转化成电信号,经放大后,由记录仪记录成色谱图.  (5)信号记录或微机数据处理系统 近年来气相色谱仪主要用色 谱数据处理机.色谱数据处理机可打印记录色谱图,并能在同一张记录纸上打印出处理后的结果,如保留时间、被测组分质量分数等.  (6)温度控制系统 用于控制和测量色谱柱、检测器、气化室温度,是气相色谱仪的重要组成部分.

色谱仪利用色谱柱先将混合物分离,然后利用检测器依次检测已分离出来的组分。色谱柱的直径为数毫米,其中填充有固体吸附剂或液体溶剂,所填充的吸附剂或溶剂称为固定相。与固定相相对应的还有一个流动相。流动相是一种与样品和固定相都不发生反应的气体,一般为氮或氢气。 待分析的样品在色谱柱顶端注入流动相,流动相带着样品进入色谱柱,故流动相又称为载气。载气在分析过程中是连续地以一定流速流过色谱柱的;而样品则只是一次一次地注入,每注入一次得到一次分析结果。 样品在色谱柱中得以分离是基于热力学性质的差异。固定相与样品中的各组分具有不同的亲合力(对气固色谱仪是吸附力不同,对气液分配色谱仪是溶解度不同)。当载气带着样品连续地通过色谱柱时,亲合力大的组分在色谱柱中移动速度慢,因为亲合力大意味着固定相拉住它的力量大。亲合力小的则移动快。4根柱管实际上是一根,只是用来表示样品中各组分在不同瞬间的状态。样品是由A、B、C3个组分组成的混合物。在载气刚将它们带入色谱柱时,三者是完全混合的,如状态(Ⅰ)。经过一定时间,即载气带着它们在柱中走过一段距离后,三者开始分离,如状态(Ⅱ)。再继续前进,三者便分离开,如状态(Ⅲ)和(Ⅳ)。固定相对它们的亲合力是A>B>C,故移动速度是C>B>A。走在最前面的组分 C首先进入紧接在色谱柱后的检测器,如状态(Ⅳ),而后B和A也依次进入检测器。检测器对每个进入的组分都给出一个相应的信号。将从样品注入载气为计时起点,到各组分经分离后依次进入检测器,检测器给出对应于各组分的最大信号(常称峰值)所经历的时间称为各组分的保留时间tr。实践证明,在条件(包括载气流速、固定相的材料和性质、色谱柱的长度和温度等)一定时,不同组分的保留时间tr也是一定的。因此,反过来可以从保留时间推断出该组分是何种物质。故保留时间就可以作为色谱仪器实现定性分析的依据。

检测器对每个组分所给出的信号,在记录仪上表现为一个个的峰,称为色谱峰。色谱峰上的极大值是定性分析的依据,而色谱峰所包罗的面积则取决于对应组分的含量,故峰面积是定量分析的依据。一个混合物样品注入后,由记录仪记录得到的曲线,称为色谱图。分析色谱图就可以得到定性分析和定量分析结果。

图中c为气相色谱仪的结构。载气由载气钢瓶提供,经过载气流量调节阀稳流和转子流量计检测流量后到样品气化室。样品气化室有加热线圈,以使液体样品气化。如果待分析样品是气体,气化室便不必加热。气化室本身就是进样室,样品可以经它注射加入载气。载气从进样口带着注入的样品进入色谱柱,经分离后依次进入检测器而后放空。检测器给出的信号经放大后由记录仪记录下样品的色谱图。

气相色谱仪是一种多组份混合物的分离、分析工具,它是以气体为流动相,用冲洗法的柱色谱技术。当多组份的分析物质进入到色谱柱时,由于各组分在色谱柱中的气相和固定液液相间的分配系数不同,因此各组份在色谱柱的运行速度也就不同,经过一定的柱长后,顺序离开色谱柱进入检测器,经检测后转换为电信号送至数据处理工作站,从而完成了对被测物质的定性定量分析。 1)热导检测器

热导检测器(TCD)属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用最广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。

2)氢火焰离子化检测器

氢火焰离子化检测器(FID)利用有机物在氢火焰的作用下化学电离而形成离子流,借测定离子流强度进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。

3)电子捕获检测器

电子捕获检测器(ECD)是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析痕量电负性有机化合物最有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,最常用的是高纯氮。

4)火焰光度检测器

火焰光度检测器(FPD)对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。

5)质谱检测器

质谱检测器(MSD)是一种质量型、通用型检测器,其原理与质谱相同。它不仅能给出一般GC检测器所能获得的色谱图(总离子流色谱图或重建离子流色谱图),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分析结构的信息,故是GC定性分析的有效工具。常被称为色谱-质谱联用(GC-MS)分析,是将色谱的高分离能力与MS的结构鉴定能力结合在一起。 (1) 大屏幕液晶中文显示,同时显示各路控温参数及载气流量或检测器参数,各种数据一目了然。

(2) 数字流量显示,用电子质量流量计,从屏幕精确显示载气流量。

(3) TCD断气自动保护,仪器断气或漏气时,微机系统自动断开桥电流,保护钨丝不被损坏。

(4) 先进的气路流程,仪器用一次进样,三检测器技术,分离效果更好,灵敏度更高。

(5) 自动功能:开机后,仪器自动检测运行状态,如有问题自动显示故障部位及故障类型,并对仪器自我保护。

(6) 专用色谱工作站和色谱数据处理器

(7) 色谱柱(进口担体)和三个净化器 1. 柱室温度:室温+15℃---350℃

2. 控制精度:+0.1℃---0.2℃

3. 检测室温度:室温+30---350℃ 控制精度:+0.1℃---0.2℃

4. 转化炉温度: +30---350℃ 控制精度:±0.1℃

5. 检测精度:H2≤2UL/L O2≤5UL/L N2≤10UL/L

CO≤2UL/L CO2≤2UL/L 烃类≤0.1UL/L

6. 开机稳定时间: <1.0小时

7. 控温范围: 柱室温度:RT+5~300℃ 汽化室、检测器温度:RT+5~350℃

8.程序升温重复性:0.2%

9. 基线噪声: TCD:≤0.1mv FID:≤1×10A

10.基线漂移: TCD:≤0.2mv/30min FID:≤1×10A/30min

11. 灵 敏 度: ≥5000ml/mg FID:≤1×10g/s

12.温度设定范围: RT+5—350℃